
  
Abstract—We present the current status of radiation belt 

modeling, providing model details and comparisons with AP-8 
and AE-8 for commonly used orbits. Improved modeling of the 
particle environment enables smarter space system design. 
 

Index Terms—Modeling, radiation belts, trapped particles. 
 

I. INTRODUCTION 
CCURATE space radiation models are important for 
reducing risk to astronauts and for designing cost-

effective, high-performance space systems. The primary 
models of Earth’s radiation belts that are in widespread use are 
AP-8 [1] and AE-8 [2], released in 1976 and 1983, 
respectively. The AP-8 models are of trapped protons and 
include AP-8 MAX and AP-8 MIN, valid for periods of solar 
maximum and solar minimum, respectively. The AE-8 models 
for trapped electrons similarly include AE-8 MAX and AE-8 
MIN. These standard models are esteemed for their extensive 
spatial coverage and user friendliness but suffer limitations and 
inaccuracies [3]-[11]. As contemporary applications demand 
precision, functionality, and energy coverage not provided by 
AP-8 and AE-8, new standard radiation belt environment 
models are needed. In this paper, we assess the current status 
of radiation belt environment modeling and show comparisons 
between models. Several compendiums of the Earth’s trapped 
radiation belt models precede this review (e.g. [12]-[15]). This 
review is motivated by the NASA/Living With A Star (LWS) 
sponsored international meeting on New Standard Radiation 
Belt and Space Plasma Models for Spacecraft Engineering, 
held in Adelphi, Maryland in October 2004. As a result of this 
international meeting of modelers and space system 
developers, roadmaps for the development of new standard 
models are under construction and two interim models are 
deemed ready for standardization. In light of the progress 
made towards the replacement of AP-8 and AE-8, this paper 
provides summaries of the features of the two proposed 
standard models as well as four other models developed since 
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the release of AP-8 and AE-8. Importantly, we offer 
comparisons of these models to AP-8 and AE-8 for four 
different representative orbits. This information will assist 
model users in understanding the tools presently available and 
how they differ from the old standards. 

II. TRAPPED RADIATION MODELS 

A. The Standard Radiation Belt Models, AP-8 and AE-8 
In order to appreciate the need for new models and to assess 

their potential, the strengths and limitations of the current 
standard models, AP-8 and AE-8, must be understood. Perhaps 
the biggest factor driving the continued use of these models 
lies in the number of years that they have been used to 
successfully design spacecraft. Their spatial coverage is 
unmatched by recent modeling efforts: in terms of McIlwain’s 
dipole shell parameter1, L, AP-8 is valid from L= 1.15 to 6.6; 
AE-8 covers L= 1.2 to 11. The data used to develop them 
come from 38 satellites [16]; thus, radiation measurements 
have some degree of inter-instrument validation. This strength 
is also a source of error in the models due to the challenge of 
inter-calibrating the instruments. Many of the detector systems 
whose data were used for these models were never properly 
calibrated and/or did not have well-defined energy sensitivities 
[3].  

The AP-8 and AE-8 models are more than 20 years old. The 
data used to build them were collected between 1958 and 
1979. Due to the dynamic nature of the space environment, the 
models may no longer portray the environment that today’s 
space systems encounter. Importantly, the inner zone electron 
flux data are known to be contaminated from high-altitude 
nuclear-device detonations during the late 1950’s and early 
1960’s [4].  

The models must be run with the same internal geomagnetic 
field models used to analyze the data [5]; as a result, secular 
changes in the magnetic field that affect the location of the 
South Atlantic Anomaly (SAA) are not accounted for, 
resulting in incorrect positions for flux values at low altitudes. 
Additional low-altitude error results from the absence of east-
west asymmetry in the models; while this effect averages out 
in non-oriented spacecraft, it is important for missions with 

 
1 This spatial coordinate parameter is most simply described as the value 

that marks the particle drift shells by their magnetic equatorial distance from 
the center of the Earth. 
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fixed orientations such as the International Space Station. Dyer 
presents Mir Space Station data highlighting this anisotropy in 
[6]. At low altitudes, the particle flux gradient becomes very 
steep due to interactions with the upper atmosphere. Daly and 
Evans [7] report problems with the interpolation method used 
in AP-8 for this region and provide an improved method of 
interpolation over the gradient. 

Limitations of the AP-8 and AE-8 models also stem from 
their energy range and temporal resolution. The models do not 
include fluxes at plasma energies, and stop far short of 
covering the up to 30 MeV electrons recorded by the CRRES 
satellite [8]. AP-8 has an energy range of 100 keV to 400 MeV 
protons, and AE-8 covers 40 keV to 4.5 MeV inner zone 
electrons and 40 keV to 7 MeV outer zone electrons. The 
models are static, providing only long-term averages for solar 
maximum or solar minimum. This division of the cycle into 
two models does not necessarily parlay into a separation of 
maximum and minimum flux: there is evidence that the long-
term fluctuation of the trapped proton environment is out of 
phase with the solar cycle [6]. In addition, long-term averaging 
removes the effects of storm injections and solar wind 
variations on flux distributions, preventing use of the models 
for worst-case analysis and for missions of short duration (<6 
months). A clear example of this shortcoming can be found in 
[9], in which Mazur compares AE-8 with data from the GOES 
7 spacecraft’s Energetic Particle Monitor (EPM). 

The space systems of today are built using higher-
performance technologies that can be more sensitive to 
radiation. Smaller margins of error in environment estimates 
will prevent costly over-design and will aid in the decision to 
use or forego a particular capability. 

B. Currently Available Models 
General information about the seven publicly available 

models that this paper addresses can be found in Table 1. The 
models are organized in the table according to region of 
coverage. Proton models developed since AP-8 and evaluated 
here include PSB97 [17], Low Altitude Trapped Radiation 
Model (LATRM) [18], Trapped Proton Model (TPM-1) [19], 
and the Combined Release and Radiation Effects Satellite 
Proton model (CRRESPRO) [20]. 

Electron models addressed in this paper that were developed 
since AE-8 include the Combined Release and Radiation 
Effects Satellite Electron model (CRRESELE) [21], Flux 
Model for Internal Charging (FLUMIC) [22], and the Particle 
ONERA2-LANL3 Electron (POLE) model [23].  

C. Proposed Standards 
While ultimately a single model of the radiation belts is 

desirable, the development of regional models will be pursued 
in the near-term. A Low Altitude Proton (LAP) model based 
on TPM-1 and PSB97 has been proposed for standardization. 
TPM-1, developed with support from the NASA Space 

 
2 Office National d’Etudes et de Recherches Aérospatiales 
3 Los Alamos National Laboratory 

Environment Effects Program, is the result of combining 
elements of LATRM, a low-altitude model from polar data 
covering almost two solar cycles, with the Air Force Research 
Laboratory’s CRRESPRO, a medium Earth orbit model based 
on the 14 months of data from the CRRES satellite. PSB97 
was developed using one year of data from the Solar, 
Anomalous, and Magnetospheric Particle Explorer (SAMPEX) 
satellite with support from the European Space Agency (ESA); 
additional SAMPEX data are available from 1992 to the 
present [17]. The addition of PSB97 and data to the LAP 
model will extend the energy coverage to 300 MeV for 
altitudes up to 800 km.  

POLE, a model of geostationary electrons, has also been 
proposed for standardization. The model is a result of the 
collaboration between LANL, with support from NASA’s 
LWS Targeted Research and Technology (TR&T) Program, 
and ONERA. POLE is based on datasets from 13 LANL 
geostationary satellites covering the period 1976-2001. In the 
future, the energy range of the model will likely be extended 
beyond the current 2.5 MeV upper limit [23]. 

The decision to standardize new models will be made by the 
Committee on Space Research/Panel for Radiation Belt 
Environment Modeling (COSPAR/PRBEM); inclusion of 
models in this paper should not be viewed as an endorsement. 
Details about the PRBEM and standardization process can be 
found at http://www.cosparhq.org/scistr/prbem.htm and links 
therein. 

III. COMPARISONS WITH AP-8 AND AE-8 

A. Proton Models 
We have generated average flux spectra from the trapped 

proton models for three commonly used orbits in order to 
present meaningful comparisons between the models. Orbits 
include an International Space Station (ISS)-like low Earth 
orbit (LEO), a low Earth polar orbit, and an elliptical medium 
Earth orbit (MEO). Average proton flux was calculated from a 
sampling of 20 revolutions per right ascensions of ascending 
node (Ω) of 0°, 90°, 180°, and 270°, during 2007 for solar 
minimum and 2012 for solar maximum. AP-8, CRRESPRO, 
and PSB97 average fluxes were generated with the ESA Space 
Environment Information System (SPENVIS); TPM-1 and 
LATRM were run using the same ephemeris file from the 
SPENVIS SAPRE orbit generator. SPENVIS uses the Jensen 
and Cain 1960 internal field model for AP-8 MIN and the 
Goddard Space Flight Center (GSFC) 12/66 field model 
extrapolated to 1970 for AP-8 MAX, as recommended in [5]. 

1) Low Earth Orbit 
Fig. 1 shows the results for an ISS-type circular low Earth 

orbit of 400 km altitude and 51.6° inclination during solar 
minimum. Both differential flux (filled symbols) and integral  
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Fig. 1. Average proton flux at solar minimum for a circular orbit at 400 km 
altitude and 51.6° inclination. 
 
flux (unfilled symbols) are graphed according to model 
capability. The consensus of the post-AP8 models suggests 
that AP-8 under-predicts proton flux above 10 MeV by more 
than a factor of two for this orbit. Actual factor differences 
from AP-8 can be found in Table 2 for 1.5 MeV, 20 MeV, 60 
MeV, and 100 MeV protons. In the table, the integral and 
differential flux predicted by AP-8 are given, along with the 
ratio of each post-AP-8 model flux versus the AP-8 predicted 
flux. When a model is not valid for a given energy value, a line 
is drawn through the table cell. As can be seen by the factor 
differences in Table 2 for energies 20 MeV and above, 
previously reported factor of two corrections to AP-8 flux 
predictions [e.g. 10] may be too low.  

For lower energies, TPM-1 predicts as much as a factor of 
nine (at 1.5 MeV-2 MeV) less average flux than does AP-8 
during solar minimum, and a factor of two less during solar 
maximum (see Fig. 2 and Table 2). The validity of the AP-8 
model for energies below 10 MeV is uncertain [10], [24]. 
Armstrong and Colborn [10] suggest using data from the S3-3  

 
Fig. 2. Proposed standard TPM-1 model at solar minimum versus solar 
maximum for a circular orbit at 400 km altitude and 51.6° inclination. 

satellite as an alternative to AP-8 for very low energy spectra. 
It is notable therefore that TPM-1’s under-prediction of AP-8 
for low energies is in contrast to these S3-3 data which over-
predict AP-8 at low altitude [24]. Our findings are in keeping 
with those of the TPM-1 developer [19]. 

In Fig. 2, TPM-1 is compared to AP-8 for periods of both 
solar minimum (grey symbols) and solar maximum (black 
symbols). For 10 MeV and lower energy protons, TPM-1 
suggests a smaller variation of flux with the solar cycle than 
does AP-8. 

 
TABLE II. AP-8 PREDICTED AVERAGE PROTON FLUX AND  

RATIOS OF NEW MODEL FLUX TO AP-8 FLUX, FOR A  
CIRCULAR ORBIT AT 400 KM ALTITUDE AND 51.6° 

INCLINATION.

2.0
1.9

LATRM
solar min

(ratio)

8.2
6.4
5.0

PSB97
solar min

(ratio)

65
96
143
442

AP-8 MIN
(cm-2 s-1)

Integral flux comparison Differential flux comparison

3.7
2.5

0.11

TPM-1
solar min

(ratio)

0.54
0.74
1.7
159

AP-8 MAX 
(MeV-1

cm-2 s-1)

3.4
2.5
0.15

TPM-1
solar max

(ratio)

1.70.9460
4.20.67100

2.32.120
2351.5

PSB97
solar min

(ratio)

AP-8 MIN
(MeV-1 

cm-2 s-1)

Energy
(MeV)

2.0
1.9

LATRM
solar min

(ratio)

8.2
6.4
5.0

PSB97
solar min

(ratio)

65
96
143
442

AP-8 MIN
(cm-2 s-1)

Integral flux comparison Differential flux comparison

3.7
2.5

0.11

TPM-1
solar min

(ratio)

0.54
0.74
1.7
159

AP-8 MAX 
(MeV-1

cm-2 s-1)

3.4
2.5
0.15

TPM-1
solar max

(ratio)

1.70.9460
4.20.67100

2.32.120
2351.5

PSB97
solar min

(ratio)

AP-8 MIN
(MeV-1 

cm-2 s-1)

Energy
(MeV)

 
 

2) Low Earth Polar Orbit 
Fig. 3 shows the results for a low Earth polar orbit of 800 

km altitude and 98° inclination during solar minimum. Both 
differential flux (filled symbols) and integral flux (unfilled 
symbols) are graphed according to model capability. Newer 
models predict a harder proton flux spectrum for this orbit than 
does AP-8, suggesting a factor of two or more greater flux for 
energies above 8 MeV. See Table 3 for comparisons at specific 
energies. As can be seen in Fig. 3, for energies above 100 
MeV, PSB97 predicts more than a factor of five greater flux at 
solar minimum for this orbit. 

For lower energies, TPM-1 predicts as much as a factor of 
nine (at 1.5 MeV) less average flux than does AP-8 during 
solar minimum, and a factor of seven less during solar 
maximum, as shown in Fig. 4 and Table 3. For this orbit, both 

 
Fig. 3. Average proton flux at solar minimum for a circular orbit at 800 km 
altitude and 98° inclination. 



 

 
Fig. 4. Proposed standard TPM-1 model at solar minimum versus solar 
maximum for a circular orbit at 800 km altitude and 98° inclination. 
 

TABLE III. AP-8 PREDICTED AVERAGE PROTON FLUX AND  
RATIOS OF NEW MODEL FLUX TO AP-8 FLUX, FOR A  

CIRCULAR ORBIT AT 800 KM ALTITUDE AND 98° 
INCLINATION.

2.7
2.9

LATRM
solar min

(ratio)

4.2
3.7
3.5

PSB97
solar min

(ratio)

5.3
8.6
13
64

AP-8 MIN
(cm-2 s-1)

Integral flux comparison Differential flux comparison

3.1
2.4
0.11

TPM-1
solar min
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AP-8 and TPM-1 show similar variation between solar 
maximum and solar minimum proton flux (Fig. 4). 

3) Medium Earth Orbit 
Average differential proton flux was determined from AP-8, 

TPM-1, and CRRESPRO for an elliptical orbit of 2000 km 
perigee, 26,750 km apogee, 63.4° inclination, and 270° 
argument of perigee. CRRESPRO is valid for solar maximum 
only; comparisons are therefore made for this part of the solar 
cycle. Both TPM-1 and CRRESPRO (on which TPM-1 is 
partly based) contain models for normally quiet geomagnetic 
periods and for very active geomagnetic periods such as the 
March 1991 event that occurred during the CRRES mission. 

For quiet geomagnetic periods of solar maximum (Fig. 5), 
CRRESPRO predicts about a factor of three lower average 
proton flux than AP-8. The difference peaks to a factor of nine 
in the 15-20 MeV range. Conversely, for active periods of 
solar maximum (Fig. 6), CRRESPRO shows agreement with 
AP-8, though with a divergence in the 15-20 MeV range of up 
to a factor of six less flux. Table 4 provides factor differences 
between the CRRESPRO models and AP-8 at 1.5 MeV, 10 
MeV, 20 MeV, and 60 MeV energy levels. 

TPM-1 suggests an order of magnitude less flux than AP-8 
for quiet periods of solar maximum (Fig. 5). The difference 
grows to a factor of 40 less flux at 10 MeV. For active 
geomagnetic periods, TPM-1 predicts lower flux by more than 

 
Fig. 5. Proton models for quiet geomagnetic period during solar maximum for 
a 2000 km x 26,750 km, 63.4° inclination, ω=270°, elliptical orbit. 
 

 
Fig. 6. Proton models for active geomagnetic period during solar maximum for 
a 2000 km x 26,750 km, 63.4° inclination, ω=270°, elliptical orbit. 
 
a factor of four for <10 MeV, and at most a factor of 20 in the 
15-20 MeV range (Fig. 6). See Table 4 for factor differences 
with AP-8 at specific energy levels. Examination of the TPM-1 
and CRRESPRO predictions for this orbit reveals that the 
difference between these models is most observable at near-
perigee altitudes where proton flux is highest. 
 

TABLE IV. AP-8 PREDICTED AVERAGE PROTON FLUX AND RATIOS OF  
NEW MODEL FLUX TO AP-8 FLUX, FOR A 2000 KM X 26,750 KM,  

63.4° INCLINATION, ω=270°, ELLIPTICAL ORBIT. 
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B. Electron Models 
Average integral flux spectra for the trapped electron models 
were generated for two common orbits: an elliptical medium 
Earth orbit and a geostationary orbit (GEO). The average 
electron flux was calculated from a sampling of 20 revolutions 
per right ascensions of ascending node (Ω) of 0°, 90°, 180°, 
and 270° for MEO. For GEO, 2 revolutions at 82°W longitude 
were used. An exception is FLUMIC, which as packaged 
within the internal charging code, DICTAT, generates average 
flux based on a one-revolution sampling. Mission dates are 
2007 for solar minimum and 2012 for solar maximum. AE-8, 
CRRESELE, and FLUMIC average fluxes were generated 
with SPENVIS; POLE was run using the same ephemeris file 
from the SPENVIS SAPRE orbit generator. SPENVIS uses the 
Jensen and Cain 1960 internal field model for AE-8 MIN and 
MAX, as recommended in [5]. 

1) Medium Earth Orbit 
Average integral electron flux was determined for an 

elliptical orbit of 8000 km x 26,750 km, 63.4° inclination, and 
270° argument of perigee. CRRESELE consists of six Ap-
dependent models of the outer zone electrons, plus an Average 
model and a Worst-case model. The models are valid for the 
solar maximum period of the solar cycle. Here, we compare 
only the Average and Worst-case models with AE-8 MAX. 

Fig. 7 shows a comparison of the electron flux predicted by 
the CRRESELE Average model to that predicted by AE-8. In 
Fig. 8, the CRRESELE Worst-case model and FLUMIC, also a 
worst-case model, are compared to AE-8. CRRESELE 
Average model differs only by a factor of 1.5 from AE-8 for 
energies below 1 MeV; however, CRRESELE Worst-case 
model suggests flux in this energy range can be more than a 
factor of ten greater than that predicted by AE-8 for this orbit. 
Conversely, FLUMIC suggests AE-8 may be a factor of three 
or more too high at energies below 1 MeV. 

For electron energies above 1 MeV at this orbit, 
CRRESELE Average model under-predicts AE-8 by as much 
as a factor of 16 (at 4 MeV). The CRRESELE Worst-case 
model over-predicts AE-8 by a factor of two before 
significantly diverging from AE-8 above 4 MeV (Fig. 8). 
FLUMIC hovers below AE-8 by about a factor of 2.5 before 
gradually converging at energies above 5 MeV. 

The integral flux values predicted by AE-8 MAX for 
electron energy minima of 0.5 MeV, 1 MeV, 2 MeV, and 4 
MeV are shown in Table 5, along with the factor differences 
between the newer model predictions and AE-8. 

2) Geostationary Orbit 
Average integral electron flux was determined from AE-8 

MAX, POLE, CRRESELE Average and Worst-case models, 
and FLUMIC, for a geostationary orbit of 35,790 km altitude 
at 82°W longitude. POLE consists of three models: Best-case, 
Average, and Worst-case; we show results from only the 
Average and Worst-case models. 

The CRRESELE Average and POLE Average models are 
compared with AE-8 in Fig. 9 for solar maximum. Fig. 10 

 
Fig. 7. CRRESELE Average model versus AE-8 MAX at solar maximum for 
an 8000 km x 26,750 km, 63.4° inclination, ω=270°, elliptical orbit. 

 
Fig. 8. Worst-case electron models versus AE-8 MAX at solar maximum for 
an 8000 km x 26,750 km, 63.4° inclination, ω=270°, elliptical orbit. 
 

TABLE V. AE-8 PREDICTED AVERAGE ELECTRON FLUX AND RATIOS OF 
NEW MODEL FLUX TO AE-8, FOR A 2000 KM X 26,750 KM,  

63.4° INCLINATION, ω=270°, ELLIPTICAL ORBIT. 
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shows the CRRESELE Worst-case, POLE Worst-case, and 
FLUMIC flux predictions for solar maximum compared to 
AE-8. At the 40 keV terminus of AE-8, POLE Average model 
predicts a factor of 1.5 greater flux, with POLE Worst-case 
model approaching a factor of 2.5 greater. For energies 
between 70 keV and 2.5 MeV, POLE Average model predicts 
less average flux by as much as a factor of five (at 1 MeV). 



 

POLE Worst-case model reduces this factor to between two 
and three, over a smaller energy range. See Table 6 for factor 
differences with AE-8 at specific energy levels. 

The CRRESELE models tell a different story. The Average 
model under-predicts AE-8 by a factor of ten initially, then 
drops to as much as 690 times below AE-8 at 3.5 MeV. On the 
other hand, the Worst-case CRRESELE model varies within a 
factor of three above or below AE-8 for most of the shared 
energy range for this orbit. 

FLUMIC, a worst-case model, under-predicts AE-8 by as 
much as a factor of 28 at 0.2 MeV, before coming within a 
factor of 3 below AE-8 at about 1.5 MeV. Both CRRESELE 
Worst-case model and FLUMIC predict greater average flux at 
5 MeV and higher at this orbit. Once again, a table of selected 
energy points is provided that shows the AE-8 MAX predicted 
average flux along with the factors by which the newer models 
differ (Table 6). 

 
Fig. 9. Average electron models versus AE-8 MAX at solar maximum for an 
82°W longitude geostationary orbit. 
 

 
Fig. 10. Worst-case models versus AE-8 MAX at solar maximum for an 82°W 
longitude geostationary orbit. 

TABLE VI. AE-8 PREDICTED AVERAGE ELECTRON FLUX AND  
RATIOS OF NEW MODEL FLUX TO AE-8,  

FOR AN 82°W LONGITUDE GEOSTATIONARY 
ORBIT.
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At geostationary orbits, AE-8 MIN and AE-8 MAX do not 

differ. The proposed standard model for this region, POLE, 
demonstrates higher average electron flux during solar 
minimum than during solar maximum [23]. This result is also 
seen with the FLUMIC model [22]. Fig. 11 shows the POLE 
Average model predictions for solar minimum and solar 
maximum as compared to AE-8 (MAX) for the GEO orbit 
examined here. Based on the POLE model results, the 
difference between solar cycle periods becomes more 
pronounced with increasing electron energy. 

IV. SUMMARY 
Since the release of AP-8 and AE-8, initiatives by both 

NASA’s Living With a Star Targeted Research and 
Technology Program and its Space Environments and Effects 
Program, ESA’s Technology Research Programme, and the 
U.S. Air Force Space Radiation Effects Program have 
stimulated further model development. We have examined 
some of these newer models with respect to AP-8 and AE-8, 
for specific orbits. This paper is intended to assist spacecraft 
designers; for this end, we have chosen commonly used orbits 
that lie within the bounds of each model’s validity. Providing 
model comparisons comes with the risk that the results will be 
extracted from their context and used for orbits other than 

 
Fig. 11. Proposed standard POLE model predictions for solar maximum and 
solar minimum at 82°W longitude geostationary orbit. 



 

those to which they apply; however, as we anticipate the 
standardization of new models, it is important to understand 
how these models differ from the tools currently available.  

All of the proton models evaluated suggest that during solar 
minimum periods at an ISS-like orbit, AP-8 under-predicts 
flux for protons greater than 10 MeV. For protons having less 
than 10 MeV of energy, TPM-1 indicates that AP-8 may over-
predict the flux at solar minimum. This pattern is seen for the 
polar LEO used in this paper, though with 8 MeV being the 
crossing point.  

At the MEO examined in this paper, both TPM-1 and 
CRRESPRO predict less flux than AP-8 during quiet 
geomagnetic conditions at solar maximum, for the entire 
shared energy range. For active geomagnetic conditions at 
solar maximum, CRRESPRO tends towards agreement with 
AP-8, though TPM-1 continues to suggest lower flux levels. 

The electron flux graphs for MEO show a murkier picture. 
The CRRESELE Average model indicates a softer spectrum 
for solar maximum at the sampled orbit. The worst-case 
model, FLUMIC, suggests that AE-8 MAX over-predicts 
electron flux for energies less than 5 MeV. Conversely, 
CRRESELE Worst-case model suggests that AE-8 greatly 
under-predicts the worst-case electron flux below 1 MeV and 
above 5 MeV during solar maximum. 

At 82°W longitude GEO, AE-8 may over-predict the flux of 
electrons between 100 keV to 2.5 MeV during average solar 
maximum conditions. The POLE models suggest that AE-8 
may under-predict electron flux at energies below 70 keV. The 
worst-case models do not form a consensus as to whether AE-
8 under- or over-predicts electron flux during more extreme 
conditions of solar maximum. Finally, we note that, as 
expected from the literature [22]-[23], the post-AE-8 models 
POLE and FLUMIC demonstrate a solar cycle variation in flux 
for this GEO orbit, with higher flux occurring at solar 
minimum. 

V. CONCLUSION 
Accurate space radiation environment models are crucial to 

planning and operating missions. Models with smaller margins 
of error in radiation environment estimates will prevent costly 
over-design and will aid in the decision to use or forego a 
particular capability. This paper provides an overview of 
advances made in these efforts, including model comparisons 
for commonly used orbits.  

At this time, we cannot make an endorsement of any 
particular model. The international COSPAR/PRBEM will 
play a central role in decisions to standardize new models. 
Until new standards have been established, the information 
provided in this paper can be used to assist spacecraft 
designers in deciding appropriate design margins of error. 
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